

Life time extension Project: LTE P.E MUEL

innogy SPAIN S.A.U · 2018

BACKGROUND OBJECTIVES TIMELINE SCOPE

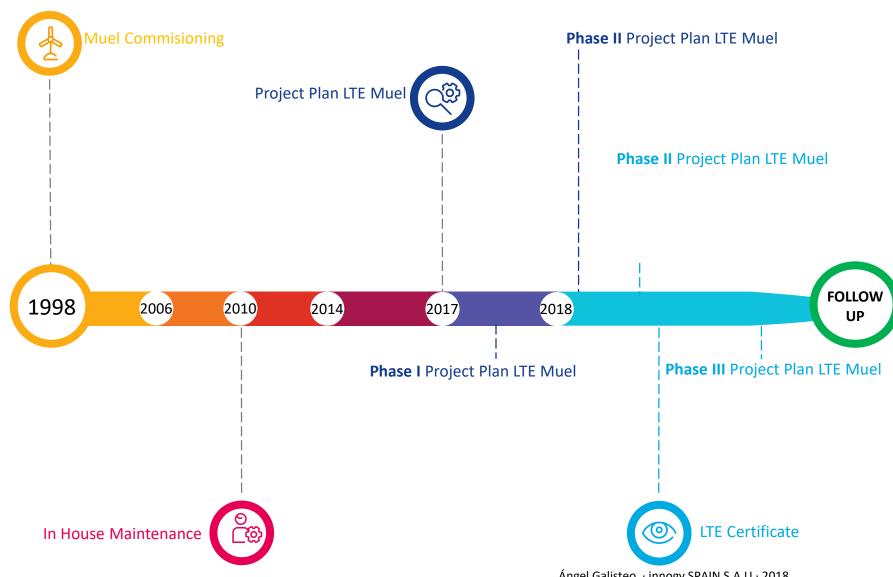
OBJECTIVES

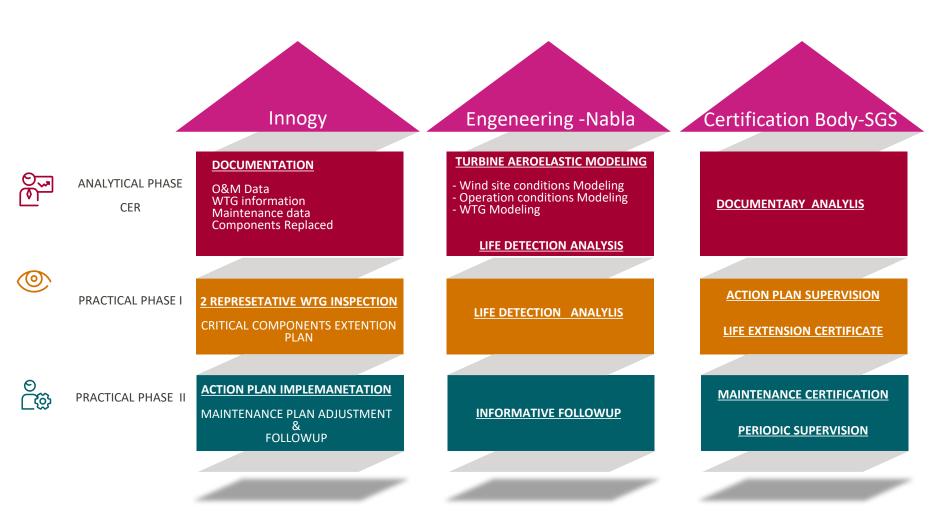
Alignament with Innogy lessons learned in Europe:

WF Carno & WF Lichtenau

Collaboration with independent entities:

SGS & NABLA


LTE certificate extended based on O&M strategy.


TIMELINE

SCOPE

LIFE ANALYSIS PROCESS

WIND CONDITIONS MODELING

- Normative vs Site-Specific
- Air Density / Seasonal Variations
- Annual Wind Distributions
- Wind Directions and Frequency
- Inflow Angles
- Wind Shear Profiles
- Turbulence

OPERATION CONDITIONS MODELING

- Number of Transients
- Yaw Misalignments
- Long Term Parking
- Ice Accretion
- Surface Degraded Conditions

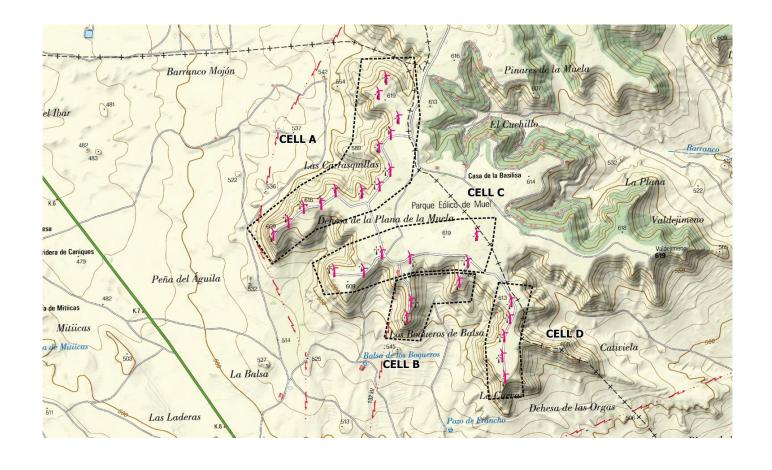
TURBINE MODELING

- Geometries
- Aerodynamics and Performances
- Structures Elastics
- Structures Mass Models
- Mechanical basic modelization
- Components Overweight vs Design
- Real Controller Settings vs Design

AEROELASTIC LOADS ANALYSIS - DESIGN CONDITIONS -

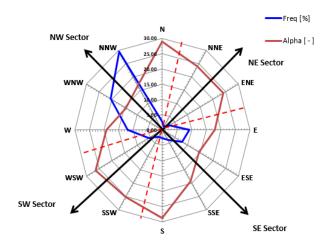
AEROELASTIC LOADS ANALYSIS - SITE SPECIFIC CONDITIONS -

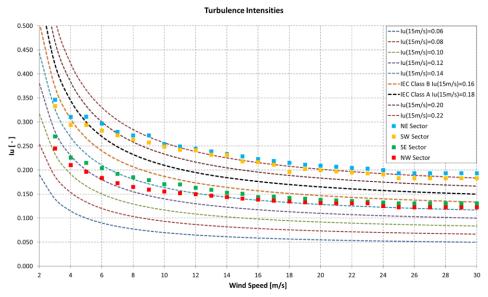
LIFE DETECTION ANALYSIS


- Per Component
- Design Life Redefinition based on Causes
- Hierarchy of main Components

LIFE EXTENSION AND LIFE MANAGEMENT ANALYSIS

- Based on Life-Consuming Site Specific Causes
- Evaluating most sensible Asset Operation Strategies
- Life Extension Strategies: Maximizing Produced Energy vs Life Consumption
- Life Management Strategies: Maximizing Produced Energy vs Market
- Optimizing Long Term Return of Investment




SUBSITING

Rose of Wind Parameters

WIND CONDITIONS (e.g. Cell A)

WIND CONDITIONS SUMMARY

		Wind Directions	DESIGN	Muel Cell A	Effect in Life	Nature of Source	
Air Density	Air Density [kg/m3]		1.225	1.152	Ŷ	Dominant	
		NW: 64.59%	11.28	10.36	r	Dominant	
Weibull a	[m/s]	SE: 23.28%	11.28	5.56	n	Dominant	
vveibuli a	[111/5]	NE: 4.04%	11.28	3.87	•	Dominant	
		SW: 8.00%	11.28	5.85	₽	Dominant	
	[deg]	NW: 64.59%	8.0	5.0	•	Important	
Inflow Angle		SE: 23.28%	8.0	-5.0	→	lm portant	
IIIIow Angle		NE: 4.04%	8.0	-3.1	⇒	lm portant	
		SW: 8.00%	8.0	3.1	俞	Important	
	[-]	NW: 64.59%	0.20	0.14	n	Dominant	
Wind Shear		SE: 23.28%	0.20	0.15	•	Dominant	
Willa Silear		NE: 4.04%	0.20	0.20	⇒	Dominant	
		SW: 8.00%	0.20	0.22	•	Dominant	
		NW: 64.59%	0.18	0.16	•	Dominant	
Turbulence	[-]	SE: 23.28%	0.18	0.16	•	Dominant	
lu(15m/s)	1-1	NE: 4.04%	0.18	0.22	•	Dominant	
		SW: 8.00%	0.18	0.22	•	Dominant	

OPERATION CONDITIONS (e.g. Cell A)

NUMBER OF TRANSIENTS LOAD CASES

		MUEL CELL A															
		Querall				NW			SE			NE			sw		
		TOTAL	Overall		64.59			23.28			4.04			8.00			
			Vin	Vrated	Vout	Vin	Vrate d	Vout	Vin	Vrated	Vout	Vin	Vrate d	Vout	Vin	Vrated	Vout
SU	[-]	1714.4	1442.1	222.5	49.8	931.5	143.7	32.2	335.7	51.8	11.6	58.3	9.0	2.0	115.4	17.8	4.0
ES	[-]	52.0	49.0	2.0	1.0	31.6	1.3	0.6	11.4	0.5	0.2	2.0	0.1	0.0	3.9	0.2	0.1
NS	[-]	1662.4	1393.1	220.5	48.8	899.8	142.4	31.5	324.3	51.3	11.4	56.3	8.9	2.0	111.4	17.6	3.9

Table 7.3-A: Type and number of transient load cases until February 2013

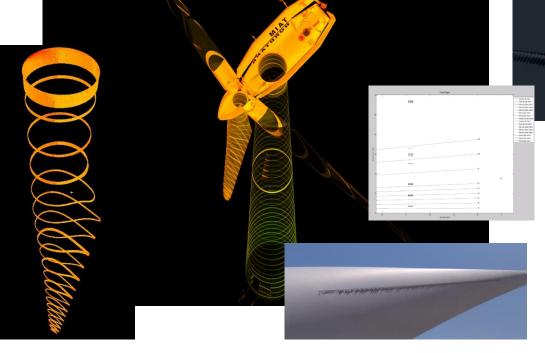
From February 2013 onwards the following conditions have been considered.

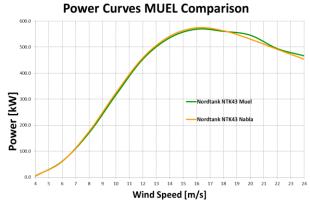
NUMBER OF TRANSIENTS LOAD CASES

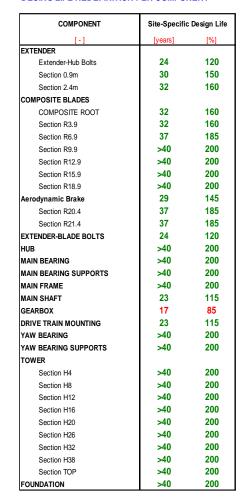
			MUEL CELL A															
					NW 64.59			5E 23.28			NE 4.04			5W 8.00				
			TOTAL	Overall														
				Vin	Vrated	Vout	Vin	Vrate d	Vout	Vin	Vrated	Vout	Vin	Vrate d	Vout	Vin	Vrated	Vout
SI	U	[-]	1560.3	1340.1	191.6	28.6	865.6	123.8	18.5	312.0	44.6	6.7	54.1	7.7	1.2	124.8	107.2	15.3
E	s	[-]	17.0	13.2	2.5	1.4	8.5	1.6	0.9	3.1	0.6	0.3	0.5	0.1	0.1	1.4	1.1	0.2
N:	S	[-]	1543.3	1327.0	189.1	27.2	857.1	122.2	17.6	308.9	44.0	6.3	53.6	7.6	1.1	123.5	106.2	15.1

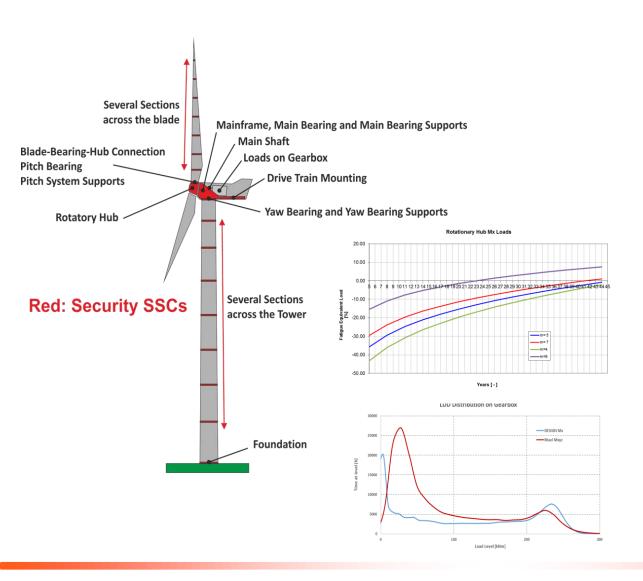
Table 7.3-B: Type and number of translent load cases since February 2013

TURBINE REVERSEENGINEERING AND VALIDATION









LIFE EXTENSION RESULTS

DESING LIFE REDEFINITION PER COMPONENT

Ángel Galisteo

Head of O&M Innogy Spain and Italy angel.galisteo@innogy.com

innogy SPAIN S.A.U · 2018