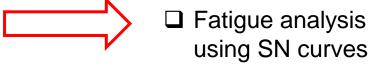


LIFE EXTENSION - FRACTURE MECHANICS

April 2021, Bilbao.

DESIGN METHODS

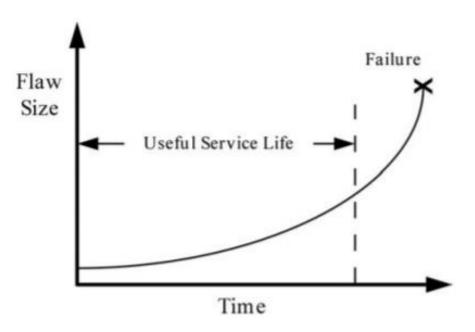

☐ Safe-Life Design

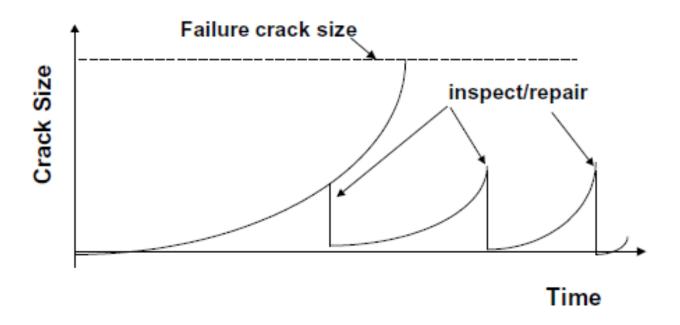
- Safety factors are applied
- The component is design to survive within a certain defined period
- Reduce the likelihood of unplanned maintenance/inspections
- Reduce the likelihood of any failure

□ Damage Tolerance Design

- Assuming the structure contains initial flaws, and this flaws:
 - will grow at a controlled rate under service loads or
 - o the size of the initial flaw will not suppose a propagation
- Maintenance required / Periodic inspections

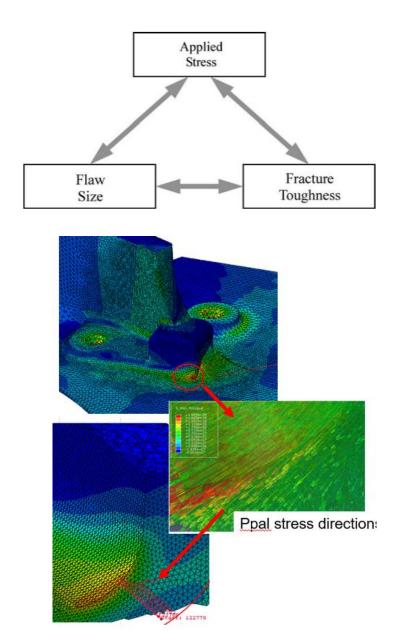
Calculation Methods




FRACTURE MECHANICHS - CRACK GROWTH

☐ The basis for this procedure is to reliably determine the propagation of a component defect and define the maximum crack size that could exist following an inspection and repair cycle, and then determine the remaining operational life of a component with this potential crack.

Crack growth approach


Periodic inspections or repairs to extend component life

FRACTURE MECHANICS - INPUTS

- Material State
 - Material properties
 - Tensile properties: Re, Rm, E,
 - Fracture mechanics properties: K_{IC}, ∆Kth, da/dn
- □ Defect State
 - Crack type: Surface crack, through thickness, embedded crack,...
 - Crack size
 - Surface defects: Visual, Dye penetrant, magnetic particles, UT,...
 - Embedded cracks: UT
- Loading State
 - Dimensions of the component cross-section in which the defect is located
 - Stress distribution in the cross-section for the defect-free component

Thank you!

