
Orsted

Offshore wind Transmission systems

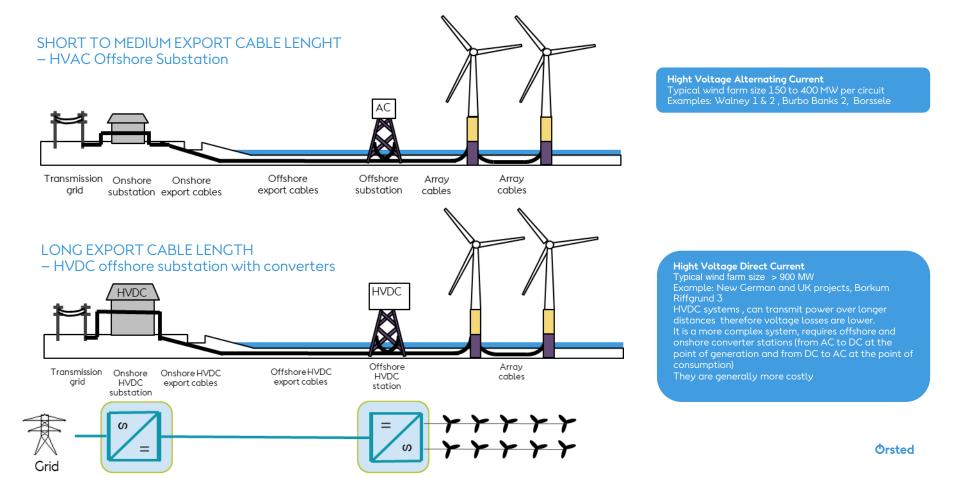
Energy integration to the grid: models and examples from different markets

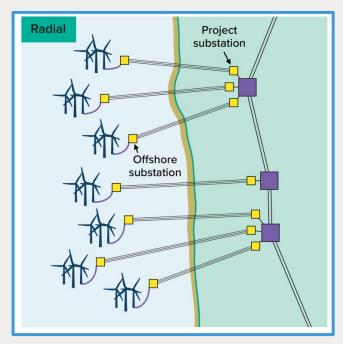
Clara Ferran Roig Senior business developer offshore (new markets)

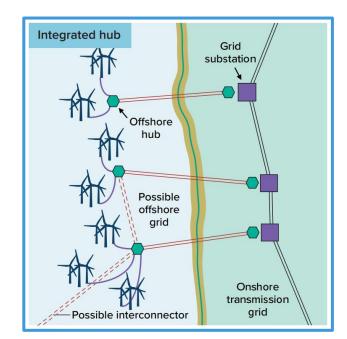
Ørsted

World leader in offshore wind with ~9GW installed and 27 wind farms in operation

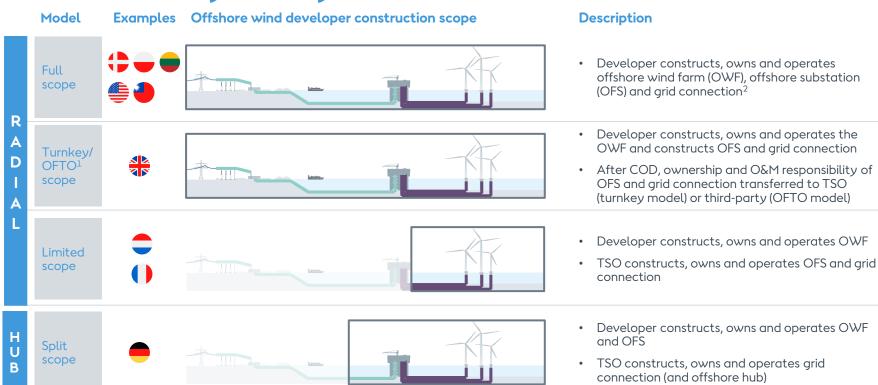
Strong commitment to the development of renewable hydrogen and e-fuels with project pipeline of +3GW


Recognised on the CDP Climate Change A List as a global leader on climate action with a target of becoming carbon neutral by 2025


Growing presence in Spain through onshore renewables business and offshore partnership with Repsol


Distance to shore generally indicates the type of high voltage cable chosen (alternating/direct current) which determines de type of Transmission system assets

The two main design options for transmission systems are Radial or Integrated Hub and are determined by governments



- Straightforward option to deliver power from a single OWF to a single POI
- · Project specific and often developer led

- Ocean grid that connects multiple OWFs to multiple POIs
- Strategic development and needs to be TSO led as part of a larger plan
- Can be monopolistic (DE) assignment or competitive (US)

Governments decide what assets will be included in the auction – models differ by country

Studies¹ that compare different offshore transmission models conclude that integration and competition determine rate-payer risk, cost and impact on environment & community

	Competitive (developer or 3 rd party builds OTA)	Monopoly (TSO builds OTA)
RADIAL	rate payer risk 🔵 cost 🔵 environment&community impact 🦲 /	rate payer risk cost environment&community impact /
	simpler to plan, design and execute	
	Flexibility towards technology development and innovation	
	Increased short term environmental and community disturbances	
	No coordination costs	Coordination costs
	One entity manages full risk and timing, the chances of delays are lower and little or no impact on ratepayer.	Increased risk of delays with impact to the ratepayer due to responsibility dispersion among entities.
HUB	rate-payer risk cost environment&community impact	rate-payer risk cost environment&community impact
	Requires long term strategy and commitment from governments (at least 10 years look ahead) and large amounts of pre-investment.	
	coordination costs among entities	
	Standardized design doesn't allow for flexibility towards technology development and innovation. Risk of becoming obsolete.	
	higher operational impact in case of failure of export system or damaging event	
	Environmental disturbances can be decreased due to smaller amount of cable and landfall works	
	Risk of timing discoordination between windfarm and hub still present and taken by the rate-payer however it might be lower do to competition setup.	Increased risk of delays due to responsibility dispersion among entities with impact on rate-payer.

^{6 1} Levitan & Associates, Inc. (2020). Offshore Wind Transmission Study Comparison of Options prepared for New Jersey Board of Public Utilities. Boston.
DIW Econ. (2019). Market Design for an Efficient Transmission of Offshore Wind Energy: A Study Comissioned by Ørsted Offshore Wind. Berlin
World Bank Group. 2021. Key Factors for Successful Development of Offshore Wind in Emerging Markets. ESMAP, World Bank, Washington, DC. License: Creative Commons Attribution CC BY 3.0 IGO

Reflections on transmission systems for floating offshore wind in Spain: The party best able to manage risk and benefit from ownership should assume responsibility for the offshore transmission assets

Key elements to consider regarding transmission model and risk responsibility distribution:

- Offshore construction experience
- Timing
- Development and evolution of floating technology

Orsted

Gracias!

